Observational insights into N$_2$O$_5$ heterogeneous chemistry:
Influencing factors and its contribution to wintertime air pollution

*Erin E. McDuffie1,2,3, Dorothy Fibiger1,2, Caroline Womack1,2, William P. Dubé1,2, Felipe Lopez-Hilfiker4, Lexie Goldberger4, Joel A. Thornton4, Viral Shah4, Lyatt Jaegle4, Hongyu Guo5, Rodney J. Weber5, Mike Reeves6, Andrew J. Weinheimer7, Pedro Campuzano-Jost2,3, Jason C. Schroder2,3, Jose L. Jimenez2,3, Carly Ebben8, Tamara Sparks8, Paul Wooldridge8, Ronald C. Cohen8, Rebecca Hornbrook7, Eric Apel7, Teresa Campos7, Alessandro Franchin1,2, Ann Middlebrook1, Munkh Baasandorj9, Steven S. Brown1,3

1NOAA, Chemical Sciences Division, 2Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, 3Department of Chemistry, University of Colorado Boulder, 4Department of Atmospheric Sciences, University of Washington, 5Earth and Atmospheric Sciences, Georgia Institute of Technology, 6Earth Observing Laboratory, NCAR, 7Atmospheric Chemistry Observations and Modeling Laboratory, NCAR, 8Department of Chemistry, University of California Berkeley, 9Department of Atmospheric Sciences, University of Utah

AGU Fall Meeting, Dec. 15, 2017
The Fate of N_2O_5...Important to Wintertime Air Quality

O_3 \rightarrow \text{NO} \rightarrow NO_2 $+$ O_3 \rightarrow NO_3 \leftrightarrow N_2O_5

Introduction

- N_2O_5 Het. Chem.
- Key Parameters

Method

- Campaigns
- Box Model

Results

- Model Treatment Assessment
- Air Quality Impact
The Fate of N_2O_5...Important to Wintertime Air Quality

NO_x Emissions \rightarrow NO \rightarrow NO$_2$ + O$_3$ \rightarrow NO$_3$ \leftrightarrow N$_2$O$_5$ \rightarrow O$_3$, NO$_2$ Source

O_3, Sunlight

<table>
<thead>
<tr>
<th>Introduction</th>
<th>Method</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>N$_2$O$_5$ Het. Chem. • Key Parameters</td>
<td>Campaigns • Box Model</td>
<td>Model Treatment Assessment • Air Quality Impact</td>
</tr>
</tbody>
</table>
The Fate of N_2O_5...Important to Wintertime Air Quality

Introduction

N_2O_5 Het. Chem. • Key Parameters

Method

Campaigns • Box Model

Results

Model Treatment Assessment • Air Quality Impact
The Fate of N_2O_5...Important to Wintertime Air Quality

$\text{N}_2\text{O}_5 + \text{O}_3 + \text{NO}_2 + \text{O}_3 \rightarrow \text{N}_2\text{O}_5 + \text{Aerosol}$

- **Key Parameters**
 - Campaigns
 - Box Model
 - Model Treatment Assessment
 - Air Quality Impact

- **Particulate Matter (PM) Source**
 - $\text{HNO}_3 + \text{NH}_3 \rightarrow \text{PM}$

- **O$_3$, NO$_2$ Source**

<table>
<thead>
<tr>
<th>Introduction</th>
<th>Method</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_2O_5 Het. Chem. • Key Parameters</td>
<td>Campaigns • Box Model</td>
<td>Model Treatment Assessment • Air Quality Impact</td>
</tr>
</tbody>
</table>
The Fate of N_2O_5...Important to Wintertime Air Quality

- **Introduction**
 - N_2O_5 Het. Chem.
 - Key Parameters

- **Method**
 - Campaigns
 - Box Model

- **Results**
 - Model Treatment Assessment
 - Air Quality Impact
The Fate of N\textsubscript{2}O\textsubscript{5}...Important to Wintertime Air Quality

\textbf{Introduction}

\textbf{Method}

\textbf{Results}

\textbf{Particulate Matter (PM) Source}

\textbf{O_3, NO_2, Cl Source}

\textbf{O_3, NO_2, PM} = U.S. Criteria Pollutants

\textbf{NO_x Emissions}

\textbf{NO, NO_2 + O_3 \rightarrow NO_3 \rightarrow N_2O_5 \rightarrow Aerosol}

\textbf{HNO_3 + NH_3 \rightarrow PM}

\textbf{CINO_2}

\textbf{Sunlight}

NO\textsubscript{2}, O\textsubscript{3}, PM\textsubscript{2.5} = U.S. Criteria Pollutants

\textbf{N_2O_5 Het. Chem. • Key Parameters}

\textbf{Campaigns • Box Model}

\textbf{Model Treatment Assessment • Air Quality Impact}
The Fate of N$_2$O$_5$...Important to Wintertime Air Quality

\[\text{NO}_x \xrightarrow{\text{Emissions}} \text{NO} \xrightarrow{\text{Sunlight}} \text{NO}_2 + \text{O}_3 \xrightarrow{\text{O}_3} \text{NO}_3 \xrightarrow{\text{Aerosol}} \text{N}_2\text{O}_5 \]

Particulate Matter (PM) Source

\[\text{HNO}_3 + \text{NH}_3 \xrightarrow{\gamma} \text{PM} \]

\[\text{O}_3, \text{NO}_2, \text{Cl} \text{ Source} \]

\[\text{O}_3, \text{NO}_2, \text{PM}_{2.5} = \text{U.S. Criteria Pollutants} \]

<table>
<thead>
<tr>
<th>Introduction</th>
<th>Method</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>N$_2$O$_5$ Het. Chem. • Key Parameters</td>
<td>Campaigns • Box Model</td>
<td>Model Treatment Assessment • Air Quality Impact</td>
</tr>
</tbody>
</table>
Derived Parameters $\gamma(N_2O_5)$ and $\varphi(\text{ClNO}_2)$

$\gamma(N_2O_5)$
- Reactive Uptake Coefficient

$\gamma(N_2O_5)$ = $\frac{1}{4} \times \bar{c} \times S_A \times \gamma(N_2O_5)$

- 1st order loss rate coefficient for N_2O_5
- Mean molecular speed
- Aerosol Surface Area

Field-Derived Range $\gamma(N_2O_5)$: 10^{-4} – 0.1

Introduction
- N_2O_5 Het. Chem.
- Key Parameters

Method
- Campaigns
- Box Model

Results
- Model Treatment Assessment
- Air Quality Impact
Derived Parameters $\gamma(N_2O_5)$ and $\varphi(ClNO_2)$

$\gamma(N_2O_5)$

Reactive Uptake Coefficient

Field-Derived Range $\gamma(N_2O_5)$:

10^{-4} – 0.1

$\varphi(ClNO_2)$

Production Yield

Field-Derived Range $\varphi(ClNO_2)$:

0 – 1

$k(N_2O_5) = \frac{1}{4} \times \bar{c} \times S_A \times \gamma(N_2O_5)$

1st order loss rate coefficient for N_2O_5

Mean molecular speed

Aerosol Surface Area
Derived Parameters $\gamma(N_2O_5)$ and $\varphi(ClNO_2)$

Understanding of uptake (γ) and yield (φ) during winter → limited by lack of wintertime field data!
Wintertime Aircraft Campaigns

WINTER – 2015
U.S. East Coast

UWFPS – 2017
Northern Utah

Flights Hours

~100 Hours (60% nocturnal) vs. ~60 Hours (50% nocturnal)

Approach

Regional flights to survey variability vs. Repeated flights to gain statistics

Analysis Goal

Assess N_2O_5 model treatment vs. Assess N_2O_5 air quality impacts

<table>
<thead>
<tr>
<th>Introduction</th>
<th>Method</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_2O_5 Het. Chem. • Key Parameters</td>
<td>Campaigns • Box Model</td>
<td>Model Treatment Assessment • Air Quality Impact</td>
</tr>
</tbody>
</table>
Model Principle:

- Simulate chemical evolution of air from sunset until measurement time
- Iterate uptake (γ) and yield (ϕ) to fit observed N_2O_5 and ClNO$_2$

Model Chemical Mechanism

Example: Iterate γ to fit N_2O_5
Campaign Results #1: WINTER

U.S. East Coast – Winter 2015

\(\gamma \): \(\text{N}_2\text{O}_5 \) Uptake

\(\phi \): \(\text{ClNO}_2 \) Yield

\(\text{Campaign Median: 0.17} \)

\(\text{Most Frequent: 0.02} \)

\(\text{N = 3116} \)

\(\text{Campaign Median: 0.014} \)

\(\text{Most Frequent: 0.016} \)

\(\text{N = 2876} \)

\(\text{Campaign Median: 0.17} \)

\(\text{Most Frequent: 0.02} \)

\(\text{N = 3116} \)

\begin{tabular}{|l|l|}
\hline
Introduction & Method & Results \\
\hline
\text{N}_2\text{O}_5 \text{ Het. Chem.} \& \text{Key Parameters} & \text{Campaigns} \& \text{Box Model} & \text{Model Treatment Assessment} \& \text{Air Quality Impact} \\
\hline
\end{tabular}
Campaign Results #1: WINTER

U.S. East Coast – Winter 2015

N$_2$O$_5$ Uptake (γ)

ClNO$_2$ Yield (φ)

N$_2$O$_5$ Uptake (γ)

- Campaign Median: 0.014
- Most Frequent: 0.016
- N = 2876

ClNO$_2$ Yield (φ)

- Campaign Median: 0.17
- Most Frequent: 0.02
- N = 3116
Parameterization of Uptake (γ)

14 Parameterizations Tested
Parameterization of Uptake (γ)

Bertram and Thornton, ACP, 2009

Inorganic Only:

$$\frac{1}{\gamma} = \frac{4V}{cSA} \frac{1}{K_H k_{R3}} \left(1 - \frac{k_{R5}[H_2O(l)]}{k_{R4}[NO_3^-]} \right) + \frac{1}{1 + \left(\frac{k_{R6}[Cl^-]}{k_{R4}[NO_3^-]} \right)}$$

γ Increase w/ Water

γ Decrease w/ Nitrate

γ Increase w/ Chloride/Nitrate

Water

Nitrate

Cl-/NO$_3^-$

<table>
<thead>
<tr>
<th>Introduction</th>
<th>Method</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>N$_2$O$_5$ Het. Chem. • Key Parameters</td>
<td>Campaigns • Box Model</td>
<td>Model Treatment Assessment • Air Quality Impact</td>
</tr>
</tbody>
</table>
Parameterization of Uptake (γ)

Best Agreement:

$$\frac{1}{\gamma} = \frac{4 V}{c SA} k_{H} k_{R3} \left(1 - \frac{k_{R5} [H_2O(l)]}{k_{R4} [NO_3^{-}]} \right) + \frac{1}{1 + \left(\frac{k_{R6} [Cl^{-}]}{k_{R4} [NO_3^{-}]} \right)} + \frac{4RT \epsilon H_{aq} D_{aq} R_c}{c \ell R_p}$$

Inorganic + Organic:

- γ Increase w/ Water
- γ Decrease w/ Nitrate
- γ Increase w/ Chloride/Nitrate
- γ Decrease w/ Organics

Water

Nitrate

Cl-/NO$_3$-

Organics

Bertram and Thornton, ACP, 2009

Riemer et al., JGR, 2009

Gaston et al., ACP, 2014
Parameterization of Uptake (γ)

Best Agreement:

Inorganic + Organic:

$$\frac{1}{\gamma} = \frac{4V}{cSA} k_H k_{R3} \left(1 - \frac{k_{R5}[H_2O(l)]}{k_{R4}[NO_3^-]} \right) + 1 + \frac{k_{R6}[Cl^-]}{k_{R4}[NO_3^-]} + \frac{4RT \varepsilon H_{aq} D_{aq} R_c}{c\ell R_p}$$

Conclusions:

- Lowest values not captured by observed variables; likely aerosol phase (solid or glass) or morphology (core-shell)
- 11 of 14 parameterizations reproduced WINTER median
Campaign Results #1: WINTER

U.S. East Coast – Winter 2015

N$_2$O$_5$ Uptake (γ)

ClNO$_2$ Yield (ϕ)

Introduction

Method

Results

N$_2$O$_5$ Het. Chem. • Key Parameters

Campaigns • Box Model

Model Treatment Assessment • Air Quality Impact
Parameterization of ClNO$_2$ Yield (φ)

$$
\varphi = \left(1 + \frac{k_3[H_2O]}{k_4[Cl^-]}\right)^{-1}
$$

Increase w/ aerosol chloride

Behnke et al., JGR, 1997
Roberts et al., GRL, 2009
Bertram and Thornton, ACP, 2009
Parameterization of ClNO$_2$ Yield (φ)

$\varphi = \left(1 + \frac{k_3[H_2O]}{k_4[Cl^-]}\right)^{-1}$

Increase w/ aerosol chloride

Conclusions:
• Box Model $\varphi < $ Parameterizations
• Models may over-predict ClNO$_2$ production
Campaign Results #2: UWFPS

N$_2$O$_5$ Uptake (γ)

Northern Utah– Winter 2017

CINO$_2$ Yield (ϕ)

- Campaign Median: 0.05 (5x > WINTER)
- Most Frequent: 0.08

- Campaign Median: 0.21
- Most Frequent: 0.05

Introduction

Method

Results

N$_2$O$_5$ Het. Chem. • Key Parameters

Campaigns • Box Model

Model Treatment Assessment • Air Quality Impact
Campaign Results #2: UWFPS

N$_2$O$_5$ Uptake (γ)

Northern Utah – Winter 2017

CLNO$_2$ Yield (ϕ)

<table>
<thead>
<tr>
<th>Frequency (%)</th>
<th>Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^-4</td>
<td>0.0</td>
</tr>
<tr>
<td>10^-3</td>
<td>1.0</td>
</tr>
<tr>
<td>10^-2</td>
<td>2.0</td>
</tr>
<tr>
<td>10^-1</td>
<td>3.0</td>
</tr>
<tr>
<td>10^0</td>
<td>4.0</td>
</tr>
<tr>
<td>10^1</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Campaign Median: 0.05 (5x > WINTER)
Most Frequent: 0.08

Campaign Median: 0.21
Most Frequent: 0.05
N₂O₅ Chemistry and Utah Air Quality

Average Mass Fraction

- Org.
- NO₃
- NH₄

Average Total Mass: 80 μg/m³

Salt Lake City – Jan. 30th, 2017

HNO₃ + NH₃ → PM

Limiting Reagent

Contribution from Nocturnal N₂O₅ Chemistry?

Introduction
Method
Results
N₂O₅ Het. Chem. • Key Parameters
Campaigns • Box Model
Model Treatment Assessment • Air Quality Impact
N$_2$O$_5$ Chemistry \rightarrow Major Source of Total Nitrate

$\gamma = 0.05$

$\varphi = 21\%$

Example Simulation over Salt Lake City ($\gamma = 0.05$)

Introduction

Method

Results

N$_2$O$_5$ Het. Chem. • Key Parameters

Campaigns • Box Model

Model Treatment Assessment • Air Quality Impact
N_2O_5 Chemistry \rightarrow Major Source of Total Nitrate

\[\gamma = 0.05 \quad \varphi = 21\% \]

Example Simulation over Salt Lake City ($\gamma = 0.05$)

- Time of Measurement
- 60% contribution from N_2O_5 chemistry by sunrise
- Salt Lake City Average: $68\% \pm 23\%$

Results
- Air Quality Impact

Introduction
- N_2O_5 Hetr. Chem. • Key Parameters

Method
- Campaigns • Box Model

Model Treatment Assessment
- Model Treatment Assessment • Air Quality Impact
Results & Summary

- N_2O_5 Uptake (γ) and ClNO$_2$ Yield (ϕ) describe nocturnal N_2O_5 fate and air quality importance.

- Box modeling of recent aircraft campaigns provide some of the newest uptake (γ) and yield (ϕ) determinations.

- Parameterizations can reproduce WINTER median uptake (γ), but not lowest values.

- WINTER yields (ϕ) do not agree with parameterizations.

- Utah study showed N_2O_5 chemistry can contribute to the majority of observed nitrate, impacting local air quality.